Gadolinium-enhanced magnetic resonance angiography of abdominal aortic aneurysms.
Academic Article
Overview
abstract
PURPOSE: The objective of this study was to assess the usefulness of gadolinum-enhanced magnetic resonance angiography (MRA) for defining anatomic features relevant to performing aortic surgery for aneurysmal disease. METHODS: Anatomic data defined by MRA, including abdominal aortic aneurysm (AAA) size and character, as well as the status of the celiac, mesenteric, renal, and iliac arteries, were correlated with angiography, ultrasonography, computed tomography, or operative data in 43 patients. Five MRA sequences were obtained in an hour-long examination optimized for aortoiliac, splanchnic, and renal artery imaging at 1.5 T in a body coil. Four of the sequences were performed during or after infusion of gadolinium to improve image quality. RESULTS: MRA correctly defined the maximum aneurysm diameter, as well as its proximal and distal extent in all patients. MRA detected 33 of 35 significant stenoses among 153 splanchnic, renal, or iliac branches examined (sensitivity = 94% and specificity = 98%). MRA did not resolve the degree of aortic branch stenotic disease sufficiently to precisely grade its severity. MRA did not reliably define the status of the inferior mesenteric artery, lumbar arteries or internal iliac arteries. One ruptured AAA and one inflammatory AAA were correctly diagnosed by MRA. No patient had a contrast reaction or contrast-induced renal toxicity related to administration of gadolinium. CONCLUSION: Gadolinium-enhanced MRA of AAA provides appropriate, essential anatomic information for aortic reconstructive surgery in a 1-hour examination devoid of contrast-related renal toxicity or catheterization-related complications attending conventional arteriography.