Intracellular signaling activity of synthetic (14R)-, (14S)-, and (14RS)-14-hydroxy-4,14-retro-retinol.
Academic Article
Overview
abstract
14-Hydroxy-4,14-retro-retinol (14-HRR), first isolated from cultures of lymphoblastoid 5/2 and HeLa cells and characterized by NMR, UV, and CD, is a metabolite of retinol which promotes growth of B lymphocytes in culture and activation of T lymphocytes by antigen receptor-mediated signals. It is also produced by various tested cell lines: fibroblasts, leukemia, and Drosophila cells. 14-HRR is the first bioactive retro-retinoid to be discovered and, after retinal and retinoic acid, is the third intracellular messenger molecule derived from retinol. Physical properties and intracellular signaling activities of synthetic (14R)-HRR, (14S)-HRR, and racemic 14-HRR are described. CD spectra indicate that natural 14-HRR isolated previously was a mixture of enantiomers. B-cell survival and T-cell activation assays performed in the optimal range of (7-1.6) x 10(-7) M surprisingly showed that all 14-HRR compounds exhibit similar activity, with the 14R enantiomer exhibiting slightly higher activity in comparison to the 14S enantiomer. However, because of the semiquantitative nature of the assays, the conclusion as to which enantiomer is more active and which is the true ligand for the target receptor must await characterization of this protein.