Effects of prefracture irradiation on the biomechanical parameters of fracture healing.
Academic Article
Overview
abstract
This study examined the effects on the biomechanical parameters of fracture healing of a single dose of 900 rad (the approximate single-dose equivalent of 2,500 rad in 10 divided doses), given 1 day prior to closed fracture of the femur. The femurs were recovered at 2, 3, 4, 8, and 16 weeks after fracture and were mounted and tested to failure in torsion; the results were compared with those in nonirradiated controls from a previously published study. Prefracture irradiation delayed the progressive increase in biomechanical parameters of fracture healing. The delay was statistically significant up to 8 weeks after fracture. At 4 weeks, the normalized torque was 44% that of intact bone in the treated group compared with 75% for the control group. Sixteen weeks after fracture, the biomechanical and histological parameters of fracture healing of the irradiated femurs were no different from those of the nonirradiated controls. Within the treated group, the irradiated fractures remained significantly weaker than their contralateral intact bone at all time intervals, with a torque of only 79% that of intact bone at 16 weeks. Thus, femoral fractures in rats healed (or regained substantial strength) following palliative doses of radiation delivered 1 day prior to injury, but the repair process was delayed compared with that of nonirradiated controls.