Development of a method to measure kinetics of radiolabelled monoclonal antibody in human tumour with applications to microdosimetry: positron emission tomography studies of iodine-124 labelled 3F8 monoclonal antibody in glioma. Academic Article uri icon

Overview

abstract

  • We present a method to assess quantitatively the immunological characteristics of tumours using radiolabelled monoclonal antibody and positron emission tomography (PET) to improve dosimetry for radioimmunotherapy. This method is illustrated with a glioma patient who was injected with 96.2 MBq of iodine-124 labelled 3F8, a murine antibody (IgG3) specific against the ganglioside GD2. Serial PET scans and plasma samples were taken over 11 days. A three-compartment model was used to estimate the plasma to tumour transfer constant (K1), the tumour to plasma transfer constant k2, the association and dissociation constants (k3, k4) of antibody binding, and the binding potential. Tumour radioactivity peaked at 18 h at 0.0045% ID/g. The kinetic parameters were estimated to be: K1 = 0.048 ml h-1 g-1, k2 = 0.16 h-1, k3 = 0.03 h-1, k4 = 0.015 h-1 and BP = 2.25. Based on these kinetic parameters, the amount of tumour-bound radiolabelled monoclonal antibody was calculated. This method permits estimates of both macrodosimetry and microdosimetry at the cellular level based on in vivo non-invasive measurement.

publication date

  • May 1, 1993

Research

keywords

  • Brain Neoplasms
  • Glioma
  • Radioimmunodetection
  • Radioimmunotherapy
  • Tomography, Emission-Computed

Identity

Scopus Document Identifier

  • 0027302774

PubMed ID

  • 8519259

Additional Document Info

volume

  • 20

issue

  • 5