Amygdala efferents form inhibitory-type synapses with a subpopulation of catecholaminergic neurons in the rat Nucleus tractus solitarius. Academic Article uri icon

Overview

abstract

  • The central nucleus of the amygdala (CNA) integrates visceral responses to stress partially through efferent projections to portions of the medial nuclei of the solitary tracts (mNTS) containing catecholaminergic neurons. To determine anatomical sites for CNA modulation of these neurons, immunoperoxidase detection of anterogradely transported Phaseolus vulgaris-leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) was combined with immunogold-silver labeling of the catecholamine-synthesizing enzyme, tyrosine hydroxylase, in adult rat mNTS. From 350 anterogradely labeled terminals identified within the intermediate mNTS, 30% formed symmetric, inhibitory-type synapses and the remainder lacked recognized junctions as seen within a single plane of section. Of the terminals forming symmetric synapses, 16% were presynaptic to tyrosine hydroxylase immunoreactive dendrites and the remainder to unlabeled dendrites. The level of tyrosine hydroxylase immunoreactivity as assessed by density of gold-silver particles was significantly lower in dendrites receiving synaptic input from CNA efferents as compared with dendrites of the same sizes (2.0 microns 2 in mean area) which received synapses from unlabeled terminals or lacked recognizable synaptic inputs. When separately examined without regard to afferent input, the medium- and larger-sized dendrites having mean cross-sectional areas of 1-3 microns 2 also contained significantly less tyrosine hydroxylase immunoreactivity than small (< 1 micron 2) dendrites. These results suggest that CNA efferents to the mNTS inhibit non-catecholamine-containing neurons and a subpopulation of catecholaminergic neurons distinguished by their low levels of tyrosine hydroxylase. The findings also indicate that small, presumably more distal, dendrites in the intermediate mNTS may synthesize and/or release catecholamines.

publication date

  • November 27, 1995

Research

keywords

  • Amygdala
  • Neurons
  • Rats, Sprague-Dawley
  • Solitary Nucleus
  • Synapses

Identity

Scopus Document Identifier

  • 0028832872

PubMed ID

  • 8636464

Additional Document Info

volume

  • 362

issue

  • 4