Measured electron energy and angular distributions from clinical accelerators.
Academic Article
Overview
abstract
Electron energy spectra and angular distributions, including angular spreads, were measured using magnetic spectrometer techniques, at isocenter, for two clinical linear accelerators: one scanning beam machine, which achieves field flatness by scanning a pencil beam over the desired field at the patient plane, and one scattering foil machine, which disperses the electrons through a graded-thickness scattering foil. All measurements were made at isocenter (in the patient plane), in air, 1 m from the nominal accelerator source. The energy measurements were confined to electrons traveling along the central axis; any widely scattered electrons were effectively neglected. The energy spectra of the scanning beam machine are all of nearly Gaussian shape and energy full-width-at-half-maximum intensity (FWHM) of about 5% of the peak mean energy (denoted (E0)*). The energy spectra of the scattering foil machine have a variety of forms as a function of energy, including even spectra with double peaks, and spectra which changed with time. The FWHM values ranged from 9%-22% of (E0)*. The angular spread measurements, at isocenter, yielded sigma theta (x) x (E0)* approximately 295 mrad-MeV for the scanning beam machine, and 346 mrad-MeV for the scattering foil machine, where sigma theta x denotes the standard deviation of the plane-projected angular distribution. These angular spreads are 30%-40% smaller than angular spreads reported by others on a very similar machine using the penumbra method. Possible causes of this discrepancy are discussed.