Retrovirus-mediated gene transfer of 6-pyruvoyl-tetrahydropterin synthase corrects tetrahydrobiopterin deficiency in fibroblasts from hyperphenylalaninemic patients.
Academic Article
Overview
abstract
Tetrahydrobiopterin (BH4) deficiency, a variant form of hyperphenylalaninemia with progressive neurological dysfunction, is primarily caused by autosomal recessive mutations in the gene encoding the 6-pyruvoyl-tetrahydropterin synthase (PTPS). PTPS is a biosynthetic enzyme for the BH4 co-factor, and its deficiency is associated with a malfunction of the phenylalanine catabolism in the liver and a lack of biogenic amine neurotransmitters dopamine and serotonin in the brain. We have previously isolated the wild-type PTPS cDNA and identified several mutations responsible for a decreased enzyme in patients. This study reports the in vitro correction of BH4 deficiency by using retrovirus mediated transfer of the PTPS cDNA into primary fibroblast cultures established from different patients. The Bing packaging cell line was used for amphotropic virus production. Following PTPS gene transfer, stimulation with cytokines restored biosynthesis of BH4 in originally defective cells to values comparable to those of heterozygous fibroblasts from clinically healthy subjects. These results not only provide a direct proof that the mutations in PTPS were causative for the mutant phenotype, but they are also the first step toward gene therapy as a potential alternative approach to treat BH4 deficiency.