Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. Academic Article uri icon

Overview

abstract

  • To understand how extracellular signals may produce long-term effects in neural cells, we have analyzed the mechanism by which neurotransmitters and growth factors induce phosphorylation of the transcription factor cAMP response element binding protein (CREB) in cortical oligodendrocyte progenitor (OP) cells. Activation of glutamate receptor channels by kainate, as well as stimulation of G-protein-coupled cholinergic receptors by carbachol and tyrosine kinase receptors by basic fibroblast growth factor (bFGF), rapidly leads to mitogen-activated protein kinase (MAPK) phosphorylation and ribosomal S6 kinase (RSK) activation. Kainate and carbachol activation of the MAPK pathway requires extracellular calcium influx and is accompanied by protein kinase C (PKC) induction, with no significant increase in GTP binding to Ras. Conversely, growth factor-stimulated MAPK phosphorylation is independent of extracellular calcium and is accompanied by Ras activation. Both basal and stimulated MAPK activity in OP cells are influenced by cytoplasmic calcium levels, as shown by their sensitivity to the calcium chelator bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid. The kinetics of CREB phosphorylation in response to the various agonists corresponds to that of MAPK activation. Moreover, CREB phosphorylation and MAPK activation are similarly affected by calcium ions. The MEK inhibitor PD 098059, which selectively prevents activation of the MAPK pathway, strongly reduces induction of CREB phosphorylation by kainate, carbachol, bFGF, and the phorbol ester TPA. We propose that in OPs the MAPK/RSK pathway mediates CREB phosphorylation in response to calcium influx, PKC activation, and growth factor stimulation.

publication date

  • February 15, 1997

Research

keywords

  • Cyclic AMP Response Element-Binding Protein
  • Growth Substances
  • Neuroglia
  • Neurotransmitter Agents
  • Stem Cells

Identity

PubMed Central ID

  • PMC6793726

Scopus Document Identifier

  • 0031034108

PubMed ID

  • 9006973

Additional Document Info

volume

  • 17

issue

  • 4