Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography.
Academic Article
Overview
abstract
OBJECTIVES: We sought to evaluate the comparative accuracy of myocardial contrast echocardiography (MCE), quantitative rest-redistribution thallium-201 (Tl-201) tomography and low and high dose (up to 40 microg/kg body weight per min) dobutamine echocardiography (DE) in identifying myocardial hibernation. BACKGROUND: Myocardial contrast echocardiography can assess myocardial perfusion and may therefore be useful in predicting myocardial hibernation. However, its accuracy in comparison to myocardial perfusion scintigraphy and to that of high dose DE remains to be investigated. METHODS: Eighteen patients (aged [+/- SD] 57 +/- 10 years) with stable coronary artery disease and ventricular dysfunction underwent the above three modalities before coronary revascularization. Myocardial contrast echocardiography was achieved with intracoronary Albunex. Rest echocardiographic and Tl-201 studies were repeated > or = 6 weeks after revascularization. RESULTS: Of 109 revascularized segments with severe dysfunction, 46 (42%) improved. Left ventricular ejection fraction increased from 38 +/- 14% to 45 +/- 13% at follow-up (p = 0.003). Rest Tl-201 uptake and the ratio of peak contrast intensity of dysfunctional to normal segments with MCE were higher (p < 0.01) in segments that recovered function compared with those that did not. Myocardial contrast echocardiography, thallium scintigraphy and any contractile reserve during DE had a similar sensitivity (89% to 91%) with a lower specificity (43% to 66%) for recovery of function. A biphasic response during DE was the most specific (83%) and the least sensitive (68%) (p < 0.01). The best concordance with MCE was Tl-201 (80%, kappa 0.57). Changes in ejection fraction after revascularization related significantly to the number of viable dysfunctional segments by all modalities (r = 0.54 to 0.65). CONCLUSIONS: In myocardial hibernation, methods evaluating rest perfusion (MCE, Tl-201) or any contractile reserve have a similar high sensitivity but a low specificity for predicting recovery of function. A limited contractile reserve (biphasic response) increases the specificity of DE. Importantly, the three techniques identified all patients who had significant improvement in global ventricular function.