Characterization of the underlying molecular defect in hereditary spherocytosis associated with spectrin deficiency.
Academic Article
Overview
abstract
Several subsets of patients with hereditary spherocytosis (HS) have been defined based on the specific red blood cell membrane protein deficiencies involving spectrin, ankyrin, band 3, and protein 4.2. Mutations of the genes encoding these proteins are currently being uncovered. Regarding spectrin, only three isolated cases of beta-spectrin gene mutations were recently reported in association with HS and spectrin deficiency. We have screened the coding region of the beta-spectrin gene using the SSCP technique, in 40 families with HS associated with spectrin deficiency or combined spectrin and ankyrin deficiencies. In this report we describe six frameshift and nonsense mutations and four missense mutations of the beta-spectrin gene in 11 unrelated families. Taking advantage of modifications in the restriction enzyme recognition sequences introduced by the mutations, we show, in all cases of frameshift and nonsense mutations, the loss of heterozygosity at the cDNA level when compared to genomic DNA, reflecting the absence of the mutant mRNA transcripts. In one family with a large pedigree including six generations and 112 members, we firmly establish the autosomal dominant inheritance of one of the beta-spectrin null mutations. Most of the mutations described are responsible for a phenotype of mild to moderate autosomal dominant form of HS associated with a conspicuous spherocytosis with frequent spiculated cells (8% to 15% acanthocytes). One missense mutation appears to be associated with a recessive form of the disease. Five common restriction enzyme polymorphisms of the coding region of the beta-spectrin gene are also described. Overall, these findings underscore the importance of the beta-spectrin gene mutations in the pathogenesis of HS and reemphasizes the extreme heterogeneity of the underlying molecular basis of this condition.