Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics. Academic Article uri icon

Overview

abstract

  • A biochemical method was developed to quantitatively compare the effectiveness of beta-lactams in triggering murein degradation (autolysin activity) in Escherichia coli. Bacteria prelabeled in their cell walls with radioactive diaminopimelic acid in growth medium were exposed for 10 min to the antibiotics at the appropriate minimal growth inhibitory concentrations and at multiples of these values, and the rate of cell wall degradation was followed during subsequent penicillin-binding protein (PBP)-1 were the most effective triggers of autolytic wall degradation; beta-lactams selective for PBP-2 were the poorest; and antibiotics preferentially binding to PBP-3 showed intermediate activities. The relative effectiveness of beta-lactams in autolysin triggering was found to parallel the effectiveness of the same drugs in causing rapid loss of viability, culture lysis, and spheroplast formation. Autolysin triggering was suppressed by inhibitors of protein and ribonucleic acid biosynthesis but not by inhibitors of deoxyribonucleic acid synthesis. The beta-lactam-induced cell wall degradation did not seem to involve a direct stimulation of enzyme activity or synthesis of new enzyme molecules, and murein sacculi isolated from cells that had been preexposed to a triggering dose of beta-lactam treatment exhibited the same sensitivity to crude, homologous autolysins as sacculi prepared from untreated control bacteria. On the basis of these observations, mechanisms are considered for the triggering of E. coli autolysins and for the role of autolytic activity in bacterial spheroplast formation, lysis, and death.

publication date

  • December 1, 1979

Research

keywords

  • Anti-Bacterial Agents
  • Cell Wall
  • Escherichia coli

Identity

PubMed Central ID

  • PMC352963

Scopus Document Identifier

  • 0018591093

PubMed ID

  • 93877

Additional Document Info

volume

  • 16

issue

  • 6