Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Academic Article uri icon

Overview

abstract

  • Large-conductance calcium-activated potassium channels (maxi-K channels) have an essential role in the control of excitability and secretion. Only one gene Slo is known to encode maxi-K channels, which are sensitive to both membrane potential and intracellular calcium. We have isolated a potassium channel gene called Slack that is abundantly expressed in the nervous system. Slack channels rectify outwardly with a unitary conductance of about 25-65 pS and are inhibited by intracellular calcium. However, when Slack is co-expressed with Slo, channels with pharmacological properties and single-channel conductances that do not match either Slack or Slo are formed. The Slack/Slo channels have intermediate conductances of about 60-180 pS and are activated by cytoplasmic calcium. Our findings indicate that some intermediate-conductance channels in the nervous system may result from an interaction between Slack and Slo channel subunits.

publication date

  • October 1, 1998

Research

keywords

  • Nerve Tissue Proteins
  • Potassium Channels
  • Potassium Channels, Calcium-Activated

Identity

Scopus Document Identifier

  • 0032174282

PubMed ID

  • 10196543

Additional Document Info

volume

  • 1

issue

  • 6