In vitro and in vivo evaluation of 64Cu-TETA-Tyr3-octreotate. A new somatostatin analog with improved target tissue uptake.
Academic Article
Overview
abstract
Radiolabeled somatostatin analogs have demonstrated potential as cancer therapeutic agents. Many of these agents are based on the analog octreotide (OC). Recently it has been shown that substitution of a tyrosine for phenylalanine in the 3-position and changing the C-terminus from an alcohol to an acid improves the targeting of somatostatin-rich tissues. The compound, 1,4,8,11-tetraazacyclotetradecane-N,N',N",N"'-tetraacetic acid-Tyr3-octreotate (TETA-Y3-TATE), was synthesized and radiolabeled with 64Cu. The receptor binding properties of 64Cu-TETA-Y3-TATE showed an estimated Kd value of 549 pM in somatostatin receptor-positive CA20948 tissue membrane. High tumor uptake was observed in two animal tumor models. Tumor uptakes of 2.37 %ID/g in CA20948 tumor-bearing rats and 21.60 %ID/g in AR42J tumor-bearing SCID mice were observed at 1 h, compared with 1.09 %ID/g and 11.24 %ID/g for 64Cu-TETA-OC. Higher uptake in other somatostatin-receptor rich tissues was also observed, compared with 64Cu-TETA-OC. Positron emission tomography (PET) imaging with 64Cu-TETA-Y3-TATE in a baboon showed significant uptake in the pituitary and adrenals, and clearance through the kidneys. 64Cu-TETA-Y3-TATE, a new OC analog for binding somatostatin receptors, demonstrated significantly greater uptake in somatostatin-rich tissues in two tumor-bearing animal models, and demonstrated great potential as a radiopharmaceutical for imaging and therapy of somatostatin receptor-positive tissues.