Trk C signaling is required for retinal progenitor cell proliferation. Academic Article uri icon

Overview

abstract

  • Although neurotrophin actions in the survival of specific retinal cell types have been identified, the biological functions for neurotrophin-3 (NT-3) in early retinal development remain unclear. Having localized NT-3 and trk C expression at early developmental stages when retinal neuroepithelial progenitor cells predominate, we sought to modulate NT-3 signaling in these cells by overexpressing a truncated isoform of the NT-3 receptor, trk C. We have demonstrated that this non-catalytic receptor can inhibit NT-3 signaling when coexpressed with the full-length kinase-active trk C receptor. Using a replication-deficient retrovirus to ectopically express the truncated trk C receptor to limited numbers of progenitor cells in ovo, we examined the effects of disrupted trk C signaling on the proliferation or differentiation of retinal cells. Clones expressing truncated trk C exhibited a 70% reduction in clone size, compared with clones infected with a control virus, indicating that inhibition of trk C signaling decreased the clonal expansion of cells derived from a single retinal progenitor cell. Additionally, impaired NT-3 signaling resulted in a reduction of all retinal cell types, suggesting that NT-3 targets retinal precursor cells rather than differentiated cell types. BrdU labeling studies performed at E6 indicate that this reduction in cell number occurs through a decrease in cell proliferation. These studies suggest that NT-3 is an important mitogen early in retinal development and serves to establish the size of the progenitor pool from which all future differentiated cells arise.

publication date

  • April 15, 2000

Research

keywords

  • Neurotrophin 3
  • Receptor, trkC
  • Retina
  • Stem Cells

Identity

PubMed Central ID

  • PMC6772215

Scopus Document Identifier

  • 0034655722

PubMed ID

  • 10751441

Additional Document Info

volume

  • 20

issue

  • 8