Design and validation of a machine for reproducible precision insertion of femoral hip prostheses for preclinical testing. Academic Article uri icon

Overview

abstract

  • Preclinical testing of orthopaedic implants is becoming increasingly important to eliminate inferior designs before animal experiments or clinical trials are begun. Preclinical tests can include both laboratory bench tests and computational modeling. One problem with bench tests is that variability in prosthesis insertion can significantly influence the failure rate; this makes comparison of prostheses more difficult. To solve this problem an insertion method is required that is both accurate and reproducible. In this work, a general approach to the insertion of hip prostheses into femoral bones is proposed based on physically replicating an insertion path determined using computer animation. As a first step, the seated prosthesis position is determined from templates and femur radiographs. Three-dimensional images of the prosthesis and bone are then imported into computer animation software and an insertion path in the coronal plane is determined. The insertion path is used to determine the profile of a cam. By attaching the prosthesis to a carriage, which is pneumatically moved along this cam, the required insertion motion of the prosthesis in the coronal plane can be achieved. This paper describes the design and validation of the insertion machine. For the validation study, a nonsymmetric hip prosthesis design (Lubinus SPII, Waldemar Link, Germany) is used. It is shown that the insertion machine has sufficient accuracy and reproducibility for preclinical mechanical testing.

publication date

  • April 1, 2000

Research

keywords

  • Arthroplasty, Replacement, Hip
  • Hip Prosthesis

Identity

Scopus Document Identifier

  • 0034030695

PubMed ID

  • 10834162

Additional Document Info

volume

  • 122

issue

  • 2