Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. Academic Article uri icon

Overview

abstract

  • B lymphocyte stimulator (BLyS) is a newly identified monocyte-specific TNF family cytokine. It has been implicated in the development of autoimmunity, and functions as a potent costimulator with antiimmunoglobulin M in B cell proliferation in vitro. Here we demonstrate that BLyS prominently enhances the humoral responses to both T cell-independent and T cell-dependent antigens, primarily by attenuation of apoptosis as evidenced by the prolonged survival of antigen-activated B cells in vivo and in vitro. BLyS acts on primary splenic B cells autonomously, and directly cooperates with CD40 ligand (CD40L) in B cell activation in vitro by protecting replicating B cells from apoptosis. Moreover, although BLyS alone cannot activate the cell cycle, it is sufficient to prolong the survival of naive resting B cells in vitro. Attenuation of apoptosis by BLyS correlates with changes in the ratios between Bcl-2 family proteins in favor of cell survival, predominantly by reducing the proapoptotic Bak and increasing its prosurvival partners, Bcl-2 and Bcl-xL. In either resting or CD40L-activated B cells, the NF-kappaB transcription factors RelB and p50 are specifically activated, suggesting that they may mediate BLyS signals for B cell survival. Together, these results provide direct evidence for BLyS enhancement of both T cell-independent and T cell-dependent humoral immune responses, and imply a role for BLyS in the conservation of the B cell repertoire. The ability of BLyS to increase B cell survival indiscriminately, at either a resting or activated state, and to cooperate with CD40L, further suggests that attenuation of apoptosis underlies BLyS enhancement of polyclonal autoimmunity as well as the physiologic humoral immune response.

publication date

  • October 2, 2000

Research

keywords

  • Apoptosis
  • B-Lymphocytes
  • Membrane Proteins
  • Tumor Necrosis Factor-alpha

Identity

PubMed Central ID

  • PMC2193312

Scopus Document Identifier

  • 0034596831

PubMed ID

  • 11015437

Additional Document Info

volume

  • 192

issue

  • 7