Mutation profiling of mismatch repair-deficient colorectal cncers using an in silico genome scan to identify coding microsatellites.
Academic Article
Overview
abstract
Human colorectal, endometrial, and gastric cancers with defective DNA mismatch repair (MMR) have microsatellite instability, a unique molecular alteration characterized by widespread frameshift mutations of repetitive DNA sequences. We developed "Kangaroo," a bioinformatics program for searches in nucleotide and protein sequence databases, and performed an in silico genome scan for DNA coding microsatellites that may have novel mutations in MMR-deficient cancers. Examination of 29 previously untested coding polyadenines revealed widespread mutations in MMR-deficient colorectal cancers, with the highest frequencies in ERCC5, CASP8AP2, p72, RAD50, CDC25, RECQL1, CBF2, RACK7, GRK4, and DNAPK (range, 10-33%). This algorithm allows comprehensive mutation profiling of MMR-deficient cancers, an important step in understanding the pathogenesis of these neoplasms.