How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. Academic Article uri icon

Overview

abstract

  • Slu7 and Prp18 act in concert during the second step of yeast pre-mRNA splicing. Here we show that the 382-amino-acid Slu7 protein contains two functionally important domains: a zinc knuckle (122CRNCGEAGHKEKDC135) and a Prp18-interaction domain (215EIELMKLELY224). Alanine cluster mutations of 215EIE217 and 221LELY224 abrogated Slu7 binding to Prp18 in a two-hybrid assay and in vitro, and elicited temperature-sensitive growth phenotypes in vivo. Yet, the mutations had no impact on Slu7 function in pre-mRNA splicing in vitro. Single alanine mutations of zinc knuckle residues Cys122, His130, and Cys135 had no effect on cell growth, but caused Slu7 function during pre-mRNA splicing in vitro to become dependent on Prp18. Specifically, zinc knuckle mutants required Prp18 in order to bind to the spliceosome. Compound mutations in both Slu7 domains (e.g., C122A-EIE, H130A-EIE, and C135A-EIE) were lethal in vivo and abolished splicing in vitro, suggesting that the physical interaction between Slu7 and Prp18 is important for cooperation in splicing. Depletion/reconstitution studies coupled with immunoprecipitations suggest that second step factors are recruited to the spliceosome in the following order: Slu7 --> Prp18 --> Prp22. All three proteins are released from the spliceosome after step 2 concomitant with release of mature mRNA.

publication date

  • August 1, 2002

Research

keywords

  • Nuclear Proteins
  • RNA Helicases
  • RNA Precursors
  • RNA, Fungal
  • RNA-Binding Proteins
  • Ribonucleoproteins, Small Nuclear
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins

Identity

PubMed Central ID

  • PMC1370317

Scopus Document Identifier

  • 0036674909

PubMed ID

  • 12212850

Additional Document Info

volume

  • 8

issue

  • 8