Termination of reentry in an inhomogeneous ring of model cardiac cells.
Academic Article
Overview
abstract
Reentrant waves propagating in a ring or annulus of excitable media are a model of the basic mechanism underlying a major class of irregular cardiac rhythms known as anatomical reentry. Such reentrant waves are terminated by rapid electrical stimulation (pacing) from an implantable device. Because the mechanisms of such termination are poorly understood, we study pacing of anatomical reentry in a one-dimensional ring of model cardiac cells. For realistic off-circuit pacing, our model-independent results suggest that circuit inhomogeneities, and the electrophysiological dynamical changes they introduce, may be essential for terminating reentry in some cases.