Cationic lipid and polymer-based gene delivery to human pancreatic islets. Academic Article uri icon

Overview

abstract

  • Transplantation of pancreatic islets has great potential for treating Type I diabetes. Ex vivo gene therapy may promote re-vascularization or inhibit apoptosis of the islets and promote graft. In this study, we investigated the feasibility of non-viral gene delivery using Enhanced Green Fluorescent Protein (EGFP) and human Vascular Endothelial Growth Factor (hVEGF(165)) expression plasmids as model reporter and therapeutic genes. LipofectAMINE/pDNA and Superfect/pDNA complexes showed high transfection efficiency in rapidly dividing Jurkat cells, but low transfection in non-dividing human islets. LipofectAMINE/pCAGGS-hVEGF transfected islets showed relatively higher levels of hVEGF than in those transfected with LipofectAMINE/pCMS-EGFP complexes or 5% glucose. To exclude endogenously secreted hVEGF, real time RT-PCR experiment was repeated using pCAGGS vector-specific forward primer and hVEGF gene-specific reverse primer. In this case, both non-transfected islets and the islets transfected with LipofectAMINE/pCMS-EGFP complexes showed negligible amplification of hVEGF. On glucose challenge, insulin release from LipofectAMINE/pCAGGS-hVEGF transfected human islets increased from 10.78 +/- 4.56 to 65 +/- 5 ng/ml, suggesting little adverse effect on islet beta cell response to glucose challenge. The low transfection efficiency is due to the islets being a cluster of approximately 1000 non-dividing cells. This underscores the importance of experimentation with the actual human islets.

publication date

  • January 1, 2003

Research

keywords

  • Gene Transfer Techniques
  • Islets of Langerhans
  • Lipids
  • Polymers

Identity

Scopus Document Identifier

  • 0037221558

PubMed ID

  • 12573622

Additional Document Info

volume

  • 7

issue

  • 1