A three-dimensional tumor cell defect in activating autologous CTLs is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation. Academic Article uri icon

Overview

abstract

  • We described previously a CTL clone able to lyse the autologous carcinoma cell line IGR-Heu after specific recognition of an HLA-A2/mutated alpha-actinin-4 peptide complex. Here, we used IGR-Heu, cultured either as standard two-dimensional monolayers or as three-dimensional spheroids, to further analyze the influence of target architecture on CTL reactivity. Interestingly, we found that changes in the tumor structure from two- to three-dimensional induced a dramatic decrease in its capacity to activate autologous CTL, as measured by IFN-gamma and tumor necrosis factor-alpha secretion. These functional alterations were attributable neither to MHC class I expression nor to tumor antigen (Ag) down-regulation, because IGR-Heu, cultured as two- or three-dimensional, expressed similar levels of HLA-A2 and alpha-actinin-4. More importantly, incubation of three-dimensional cells with synthetic epitope completely restored cytokine release by CTL. This defective Ag presentation correlated with a decrease in heat shock protein (hsp)70 expression by three-dimensional tumors compared with two-dimensional cells. Furthermore, transfection of the tumor cells with hsp70 cDNA completely restored the Ag-presenting potential of spheroids and, therefore, cytokine production by T cells. These data strongly suggest that hsp70 down-regulation in three-dimensional cells may result in tumor resistance to the immune response.

publication date

  • July 1, 2003

Research

keywords

  • Antigen Presentation
  • Carcinoma, Large Cell
  • HSP70 Heat-Shock Proteins
  • Lung Neoplasms
  • Lymphocytes, Tumor-Infiltrating
  • T-Lymphocytes, Cytotoxic

Identity

Scopus Document Identifier

  • 0037742235

PubMed ID

  • 12839959

Additional Document Info

volume

  • 63

issue

  • 13