Enhanced T cell responses due to diacylglycerol kinase zeta deficiency.
Academic Article
Overview
abstract
Much is known about how T cell receptor (TCR) engagement leads to T cell activation; however, the mechanisms terminating TCR signaling remain less clear. Diacylglycerol, generated after TCR ligation, is essential in T cells. Its function must be controlled tightly to maintain normal T cell homeostasis. Previous studies have shown that diacylglycerol kinase zeta (DGKzeta), which converts diacylglycerol to phosphatidic acid, can inhibit TCR signaling. Here we show that DGKzeta-deficient T cells are hyperresponsive to TCR stimulation both ex vivo and in vivo. Furthermore, DGKzeta-deficient mice mounted a more robust immune response to lymphocytic choriomeningitis virus infection than did wild-type mice. These results demonstrate the importance of DGKzeta as a physiological negative regulator of TCR signaling and T cell activation.