Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). Academic Article uri icon

Overview

abstract

  • Parathyroid hormone (PTH) regulates extracellular calcium homeostasis through the type 1 PTH receptor (PTH1R) expressed in kidney and bone. The PTH1R undergoes beta-arrestin/dynamin-mediated endocytosis in response to the biologically active forms of PTH, PTH-(1-34), and PTH-(1-84). We now show that amino-truncated forms of PTH that do not activate the PTH1R nonetheless induce PTH1R internalization in a cell-specific pattern. Activation-independent PTH1R endocytosis proceeds through a distinct arrestin-independent mechanism that is operative in cells lacking the adaptor protein Na/H exchange regulatory factor 1 (NHERF1) (ezrin-binding protein 50). Using a combination of radioligand binding experiments and quantitative, live cell confocal microscopy of fluorescently tagged PTH1Rs, we show that in kidney distal tubule cells and rat osteosarcoma cells, which lack NHERF1, the synthetic antagonist PTH-(7-34) and naturally circulating PTH-(7-84) induce internalization of PTH1R in a beta-arrestin-independent but dynamin-dependent manner. Expression of NHERF1 in these cells inhibited antagonist-induced endocytosis. Conversely, expression of dominant-negative forms of NHERF1 conferred internalization sensitivity to PTH-(7-34) in cells expressing NHERF1. Mutation of the PTH1R PDZ-binding motif abrogated interaction of the receptor with NHERF1. These mutated receptors were fully functional but were now internalized in response to PTH-(7-34) even in NHERF1-expressing cells. Removing the NHERF1 ERM domain or inhibiting actin polymerization allowed otherwise inactive ligands to internalize the PTH1R. These results demonstrate that NHERF1 acts as a molecular switch that legislates the conditional efficacy of PTH fragments. Distinct endocytic pathways are determined by NHERF1 that are operative for the PTH1R in kidney and bone cells.

publication date

  • August 14, 2003

Research

keywords

  • Phosphoproteins
  • Receptor, Parathyroid Hormone, Type 1

Identity

Scopus Document Identifier

  • 0242384770

Digital Object Identifier (DOI)

  • 10.1074/jbc.M306019200

PubMed ID

  • 12920119

Additional Document Info

volume

  • 278

issue

  • 44