Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells.
Academic Article
Overview
abstract
We analyzed the intracellular transport of HDL and its associated free sterol in polarized human hepatoma HepG2 cells. Using pulse-chase protocols, we demonstrated that HDL labeled with Alexa 488 at the apolipoprotein (Alexa 488-HDL) was internalized by a scavenger receptor class B type I (SR-BI)-dependent process at the basolateral membrane and became enriched in a subapical/apical recycling compartment. Most Alexa 488-HDL was rapidly recycled to the basolateral cell surface and released from cells. Within 30 min of chase at 37 degrees C, approximately 3% of the initial cell-associated Alexa 488-HDL accumulated in the biliary canaliculus (BC) formed at the apical pole of polarized HepG2 cells. Even less Alexa 488-HDL was transported to late endosomes or lysosomes. The fluorescent cholesterol analog dehydroergosterol (DHE) incorporated into Alexa 488-HDL was delivered to the BC within a few minutes, independent of the labeled apolipoprotein. This transport did not require metabolic energy and could be blocked by antibodies against SR-BI. The fraction of cell-associated DHE transported to the BC was comparable when cells were incubated with either Alexa 488-HDL containing DHE or with DHE bound to methyl-beta-cyclodextrin. We conclude that rapid, nonvesicular transport of sterol to the BC and efficient recycling of HDL particles underlies the selective sorting of sterol from HDLs in hepatocytes.