Ultrasonic spectrum-analysis and neural-network classification as a basis for ultrasonic imaging to target brachytherapy of prostate cancer.
Academic Article
Overview
abstract
Conventional B-mode ultrasound is the standard means of imaging the prostate for guiding prostate biopsies and planning brachytherapy of prostate cancer. Yet B-mode images do not allow adequate visualization of cancerous lesions of the prostate. Ultrasonic tissue-typing imaging based on spectrum analysis of radiofrequency echo signals has shown promise for overcoming the limitations of B-mode imaging for visualizing prostate tumors. Tissue typing based on radiofrequency spectrum analysis uses nonlinear methods, such as neural networks, to classify tissue by using spectral-parameter and clinical-variable values. Two- and three-dimensional images based on these methods show potential for improving the guidance of prostate biopsies and the targeting of radiotherapy of prostate cancer. Two-dimensional images have been imported into instrumentation for real-time biopsy guidance and into commercial dose-planning software for brachytherapy planning. Three-dimensional renderings seem to be capable of depicting locations and volumes of cancer foci.