Elevated Ca2+(i) transients induced by trimethyltin chloride in HeLa cells: types and levels of response. Academic Article uri icon

Overview

abstract

  • Humans are exposed to organotins, like trimethyltin (TMT) chloride via air, water and food, and intoxication might result in severe health complications. Toxic effects of organotin compounds are well documented, but possible mechanisms remain unclear and only little information is available how organometallic species interact with calcium controlling mechanisms. Therefore, the aim of this work was to investigate the effects of TMT on calcium homeostasis in HeLa S3 cells. Dynamic changes of cytosolic calcium (Ca2+(i)) were monitored using laser-scanning microscopy and fluo-4 loaded cells. Application of TMT resulted in sustained as well as in transient elevations of Ca2+(i). The number of reacting cells was directly correlated to the concentration of TMT used: with 500 microM TMT all cells reacted, with 50 microM TMT 80% and with 5 microM 74%. The fast Ca2+(i)-transients (spikes), measured in single cells, occurred even with 0.25 microM TMT and varied in size and duration. The sustained increase of Ca2+(i), measured as the average over all cells, was dose dependent with an approximately 8% increase for 5 microM TMT, approximately 12.3% for 50 microM and approximately 145% for 500 microM TMT. Moreover, this effect was partly reversible. A second application resulted in a similar sustained rise of Ca2+(i) compared to the first application of TMT, there was also no difference when no calcium was added to the external solution (151+/-10% compared to 145+/-15%; 500 microM TMT). This rise of Ca2+(i) was highly reduced (<10% increase) when the internal calcium stores were depleted before TMT (500 microM) was applied. Our data suggest that TMT influences Ca2+(i)-homeostasis of HeLa S3 cells, which might be related to its toxicity in this cell line.

publication date

  • March 1, 2005

Research

keywords

  • Calcium
  • Calcium Signaling
  • Homeostasis
  • Trimethyltin Compounds

Identity

Scopus Document Identifier

  • 12444288006

PubMed ID

  • 15670872

Additional Document Info

volume

  • 37

issue

  • 3