Viral dynamics and CD4+ T cell counts in subtype C human immunodeficiency virus type 1-infected individuals from southern Africa. Academic Article uri icon

Overview

abstract

  • Defining viral dynamics in natural infection is prognostic of disease progression and could prove to be important for vaccine trial design as viremia may be a likely secondary end point in phase III HIV efficacy trials. There are limited data available on the early course of plasma viral load in subtype C HIV-1 infection in Africa. Plasma viral load and CD4+ T cell counts were monitored in 51 recently infected subjects for 9 months. Individuals were recruited from four southern African countries: Zambia, Malawi, Zimbabwe, and South Africa and the median estimated time from seroconversion was 8.9 months (interquartile range, 5.7-14 months). All were infected with subtype C HIV-1 and median viral loads, measured using branched DNA, ranged from 3.82-4.02 log10 RNA copies/ml from 2-24 months after seroconversion. Viral loads significantly correlated with CD4+ cell counts (r=-0.5, p<0.0001; range, 376-364 cells/mm3) and mathematical modeling defined a median set point of 4.08 log10 (12 143 RNA copies/ml), which was attained approximately 17 months after seroconversion. Comparative measurements using three different viral load platforms (bDNA, Amplicor, and NucliSens) confirmed that viremia in subtype C HIV-1-infected individuals within the first 2 years of infection did not significantly differ from that found in early subtype B infection. In conclusion, the course of plasma viremia, as described in this study, will allow a useful baseline comparator for understanding disease progression in an African setting and may be useful in the design of HIV-1 vaccine trials in southern Africa.

publication date

  • April 1, 2005

Research

keywords

  • CD4-Positive T-Lymphocytes
  • HIV Infections
  • HIV-1

Identity

Scopus Document Identifier

  • 20944442196

Digital Object Identifier (DOI)

  • 10.1089/aid.2005.21.285

PubMed ID

  • 15943570

Additional Document Info

volume

  • 21

issue

  • 4