Decreased neurotrophin TrkB receptor expression reduces lesion size in the apolipoprotein E-null mutant mouse. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Accumulation of macrophages and smooth muscle cells in the vascular wall is critical for the development of atherosclerotic lesions. Although much is known about the factors that regulate macrophage recruitment to the vascular wall, the ability of growth factors to regulate smooth muscle cell recruitment in lesion development in vivo is unclear. Our previous studies demonstrated that neurotrophins and their receptors, the Trk receptor tyrosine kinases, are potent chemotactic factors for smooth muscle cells, and the expression of brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, is upregulated in human atherosclerotic lesions. METHODS AND RESULTS: TrkB(+/-) mice on a 129/B6 background were backcrossed to apolipoprotein E (ApoE)-null (ApoE(-/-)) mice on the C57Bl/6 background for 6 to 8 generations. Immunohistochemical analysis demonstrated BDNF immunoreactivity in areas of macrophage and smooth muscle cell infiltration, whereas TrkB immunoreactivity was predominant in areas of neointimal smooth muscle cells. Moreover, haplodeficient expression of TrkB in ApoE(-/-) mice was associated with a 30% to 40% reduction in lesion size compared with ApoE(-/-) mice with normal expression of TrkB and a 45% decrease in smooth muscle cell accumulation in the lesions. Finally, reconstitution with bone marrow from ApoE(-/-) mice with normal TrkB expression did not restore lesion development in TrKB(+/-)/ApoE(-/-) mice. CONCLUSIONS: These results suggest that TrkB expression on smooth muscle cells contributes to lesion development in the cholesterol-fed ApoE-null mutant mouse. These data demonstrate, for the first time, a role for the neurotrophin TrkB receptor in atherosclerotic lesion development.

publication date

  • December 6, 2005

Research

keywords

  • Arteriosclerosis
  • Receptor, trkB

Identity

Scopus Document Identifier

  • 33644873541

PubMed ID

  • 16330706

Additional Document Info

volume

  • 112

issue

  • 23