The primary structure of human plasma high density apolipoprotein glutamine I (ApoA-I). II. The amino acid sequence and alignment of cyanogen bromide fragments IV, III, and I.
Academic Article
Overview
abstract
Apolipoprotein glutamine I (apoLP-Gln-I or apoA-I) is the major protein constituent of the human plasma high density lipoproteins. Cleavage of this protein with cyanogen bromide yields four fragments, designated in the order of elution from Bio-Gel P-30 as CNBr I, II, III, and IV. In the first paper in this series, the amino acid sequence of the NH2-terminal fragment, CNBr II, is reported. In the present study, CNBr IV, III, and I, containing, respectively, 25, 36, and 94 amino acids were sequenced by conventional means. To establish the alignment of the cyanogen bromide fragments, apoLP-Gln-I was digested with trypsin and two of the three methionine-containing tryptic peptides were isolated. The amino acid sequence of apoLP-Gln-I is as follows: (see article). With the complete amino acid sequence available, a CPK space-filling model of apoLP-Gln-I was constructed. The protein was placed into an alpha helical conformation wherever the primary structure permitted. Thirteen helical regions were identified. These regions account for 70% of the amino acid residues of the protein. Each helix is characterized as having two faces (amphipathic). One is a polar face that occupies approximately 180 degrees of the surface of the helix and the other is a hydrophobic face that occupies the other 180 degrees of the helical surface. Similar amphipathic helices have been identified previously in the other lipoprotein-proteins that have known sequences. It is suggested that the amphipathic helical regions of apoLP-Gln-I are important in the binding of phospholipids in high density lipoproteins.