An adenoviral vector for probing promoter activity in primary immune cells.
Academic Article
Overview
abstract
Functional analysis of the DNA regulatory regions that control gene expression has largely been performed through transient transfection of promoter-reporter constructs into transformed cells. However, transformed cells are often poor models of primary cells. To directly analyze DNA regulatory regions in primary cells, we generated a novel adenoviral luciferase reporter vector, pShuttle-luciferase-GFP (pSLUG) that contains a promoterless luciferase cassette (with an upstream cloning site) for probing promoter activity, and a GFP expression cassette that allows for the identification of transduced cells. Recombinant adenoviruses generated from this vector can transduce a wide range of primary immune cells with high efficiency, including human macrophages, dendritic cells and T cells; and mouse T cells transgenic for the coxsackie and adenoviral receptor (CAR). In primary T cells, we show inducible nuclear factor of activated T cells (NF-AT) activity using a recombinant pSLUG adenovirus containing a consensus NF-AT promoter. We further show inducible IL-12/23 p40 promoter activity in primary macrophages and dendritic cells using a recombinant pSLUG adenovirus containing the proximal human IL-12/23 p40 promoter. The pSLUG system promises to be a powerful tool for the analysis of DNA regulatory regions in diverse types of primary immune cells.