Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection. Academic Article uri icon

Overview

abstract

  • Members of the IFN regulatory factor (IRF) family regulate gene expression critical to immune response, hemopoiesis, and proliferation. Although related by homology at their N-terminal DNA-binding domain, they display individual functional properties. The distinct properties result from differences in regulated expression, response to activating signals, and interaction with DNA regulatory elements. IRF-3 is expressed ubiquitously and is activated by serine phosphorylation in response to viral infection or TLR signaling. Evidence indicates that the kinases TANK-binding kinase 1 and inhibitor of NF-kappaB kinase-epsilon specifically phosphorylate and thereby activate IRF-3. We evaluated the contribution of another member of the IRF family, IRF-5, during viral infection since prior studies provided varied results. Analysis of phosphorylation, nuclear translocation, dimerization, binding to CREB-binding protein, recognition of DNA, and induction of gene expression were used comparatively with IRF-3 as a measure of IRF-5 activation. IRF-5 was not activated by viral infection; however, expression of TANK-binding kinase 1 or inhibitor of NF-kappaB kinase-epsilon did provide clear activation of IRF-5. IRF-5 is therefore distinct in its activation profile from IRF-3. However, similar to the biological effects of IRF-3 activation, a constitutively active mutation of IRF-5 promoted apoptosis. The apoptosis was inhibited by expression of Bcl-x(L) but not a dominant-negative mutation of the Fas-associated death domain. These studies support the distinct activation profiles of IRF-3 in comparison to IRF-5, but reveal a potential shared biological effect.

publication date

  • June 15, 2006

Research

keywords

  • Interferon Regulatory Factor-3
  • Interferon Regulatory Factors
  • Newcastle disease virus

Identity

Scopus Document Identifier

  • 33744906762

PubMed ID

  • 16751392

Additional Document Info

volume

  • 176

issue

  • 12