3D cell nuclei segmentation based on gradient flow tracking. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Reliable segmentation of cell nuclei from three dimensional (3D) microscopic images is an important task in many biological studies. We present a novel, fully automated method for the segmentation of cell nuclei from 3D microscopic images. It was designed specifically to segment nuclei in images where the nuclei are closely juxtaposed or touching each other. The segmentation approach has three stages: 1) a gradient diffusion procedure, 2) gradient flow tracking and grouping, and 3) local adaptive thresholding. RESULTS: Both qualitative and quantitative results on synthesized and original 3D images are provided to demonstrate the performance and generality of the proposed method. Both the over-segmentation and under-segmentation percentages of the proposed method are around 5%. The volume overlap, compared to expert manual segmentation, is consistently over 90%. CONCLUSION: The proposed algorithm is able to segment closely juxtaposed or touching cell nuclei obtained from 3D microscopy imaging with reasonable accuracy.

publication date

  • September 4, 2007

Research

keywords

  • Algorithms
  • Cell Nucleus
  • Image Interpretation, Computer-Assisted
  • Imaging, Three-Dimensional
  • Pattern Recognition, Automated

Identity

PubMed Central ID

  • PMC2064921

Scopus Document Identifier

  • 35948953980

PubMed ID

  • 17784958

Additional Document Info

volume

  • 8