Negative regulation of parathyroid hormone (PTH)-activated phospholipase C by PTH/PTH-related peptide receptor phosphorylation and protein kinase A. Academic Article uri icon

Overview

abstract

  • PTH binding to the PTH/PTHrP receptor activates adenylate cyclase/protein kinase A (PKA) and phospholipase C (PLC) pathways and increases receptor phosphorylation. The mechanisms regulating PTH activation of PLC signaling are poorly understood. In the current study, we explored the role of PTH/PTHrP receptor phosphorylation and PKA in PTH activation of PLC. When treated with PTH, LLCPK-1 cells stably expressing a green fluorescent protein (GFP)-tagged wild-type (WT) PTH/PTHrP receptor show a small dose-dependent increase in PLC signaling as measured by inositol trisphosphate accumulation assay. In contrast, PTH treatment of LLCPK-1 cells stably expressing a GFP-tagged receptor mutated in its carboxyl-terminal tail so that it cannot be phosphorylated (PD-GFP) results in significantly higher PLC activation (P<0.001). The effects of PTH on PLC activation are dose dependent and reach maximum at the 100 nm PTH dose. When WT receptor-expressing cells are pretreated with H89, a specific inhibitor of PKA, PTH activation of PLC signaling is enhanced in a dose-dependent manner. H89 pretreatment in PD-GFP cells causes a further increase in PLC activation in response to PTH treatment. Interestingly, PTH and forskolin (adenylate cyclase/PKA pathway activator) treatment causes an increase in PLCbeta3 phosphorylation at the Ser1105 inhibitory site and that increase is blocked by the PKA inhibitor, H89. Expression of a mutant PLCbeta3 in which Ser1105 was mutated to alanine (PLCbeta3-SA), in WT or PD cells increases PTH stimulation of inositol 1,4,5-trisphosphate formation. Altogether, these data suggest that PTH signaling to PLC is negatively regulated by PTH/PTHrP receptor phosphorylation and PKA. Furthermore, phosphorylation at Ser1105 is demonstrated as a regulatory mechanism of PLCbeta3 by PKA.

publication date

  • May 1, 2008

Research

keywords

  • Cyclic AMP-Dependent Protein Kinases
  • Parathyroid Hormone
  • Receptor, Parathyroid Hormone, Type 1
  • Type C Phospholipases

Identity

PubMed Central ID

  • PMC2488210

Scopus Document Identifier

  • 47949106268

Digital Object Identifier (DOI)

  • 10.1210/en.2007-1375

PubMed ID

  • 18450967

Additional Document Info

volume

  • 149

issue

  • 8