Differential requirement for the SAP-Fyn interaction during NK T cell development and function. Academic Article uri icon

Overview

abstract

  • The adaptor molecule SAP (signaling lymphocytic activation molecule-associated protein) plays a critical role during NK T (NKT) cell development in humans and mice. In CD4(+) T cells, SAP interacts with the tyrosine kinase Fyn to deliver signals required for TCR-induced Th2-type cytokine production. To determine whether the SAP-dependent signals controlling NKT cell ontogeny rely on its binding to Fyn, we used the OP9-DL1 system to initiate structure function studies of SAP in murine NKT cell development. In cultures containing wild-type (WT) hematopoietic progenitors, we noted the transient emergence of cells that reacted with the NKT cell-specific agonist alpha-galactosyl ceramide and its analog PBS57. Sap(-/-) cells failed to give rise to NKT cells in vitro; however, their development could be rescued by re-expression of WT SAP. Emergence of NKT cells was also restored by a mutant version of SAP (SAP R78A) that cannot bind to Fyn, but with less efficiency than WT SAP. This finding was accentuated in vivo in Sap(R78A) knock-in mice as well as Sap(R78A) competitive bone marrow chimeras, which retained NKT cells but at significantly reduced numbers compared with controls. Unlike Sap(R78A) CD4(+) T cells, which produce reduced levels of IL-4 following TCR ligation, alpha-galactosyl ceramide-stimulated NKT cells from the livers and spleens of Sap(R78A) mice produced Th2 cytokines and activated NK cells in a manner mimicking WT cells. Thus, SAP appears to use differential signaling mechanisms in NKT cells, with optimal ontogeny requiring Fyn binding, while functional responses occur independently of this interaction.

publication date

  • August 15, 2008

Research

keywords

  • Cell Differentiation
  • Intracellular Signaling Peptides and Proteins
  • Killer Cells, Natural
  • Proto-Oncogene Proteins c-fyn
  • T-Lymphocyte Subsets

Identity

PubMed Central ID

  • PMC2585984

Scopus Document Identifier

  • 53149083028

PubMed ID

  • 18684920

Additional Document Info

volume

  • 181

issue

  • 4