Differential coupling of the human cannabinoid receptors hCB1R and hCB2R to the G-protein G(alpha)i2beta1gamma2. Academic Article uri icon

Overview

abstract

  • Human cannabinoid receptors 1 (hCB(1)R) and 2 (hCB(2)R) are expressed in the CNS and couple to G(i)/G(o)-proteins. The aim of this study was to compare coupling of hCB(1)R and hCB(2)R to G(alpha)(i2)beta(1)gamma(2) in Sf9 insect cells. High-affinity agonist binding at hCB(1)R, but not at hCB(2)R, was resistant to guanine nucleotides. hCB(1)R activated G(alpha)(i2)beta(1)gamma(2) much more rapidly than hCB(2)R in the [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTPgammaS) binding assay. Moreover, hCB(1)R exhibited a higher constitutive activity than hCB(2)R as assessed by the relative inhibitory effects of inverse agonists on [(35)S]GTPgammaS binding and steady-state high-affinity GTPase activity compared to the stimulatory effects of the hCB(1/2)R agonist CP 55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol]. G(alpha)(i2)beta(1)gamma(2) coupled to hCB(2)R exhibited higher GDP- and GTPgammaS-affinities than G(alpha)(i2)beta(1)gamma(2) coupled to hCB(1)R. NaCl effectively reduced constitutive activity of hCB(1)R but not of hCB(2)R. Collectively, hCB(1)R and hCB(2)R couple differentially to G(alpha)(i2)beta(1)gamma(2). Moreover, hCB(1)R exhibits higher constitutive activity than hCB(2)R. These differences point to distinct functions of hCB(1)R and hCB(2)R in the CNS.

publication date

  • October 2, 2008

Research

keywords

  • GTP-Binding Protein alpha Subunit, Gi2
  • GTP-Binding Protein gamma Subunits
  • Receptor, Cannabinoid, CB1
  • Receptor, Cannabinoid, CB2

Identity

Scopus Document Identifier

  • 54249137719

Digital Object Identifier (DOI)

  • 10.1016/j.neulet.2008.09.078

PubMed ID

  • 18845226

Additional Document Info

volume

  • 447

issue

  • 1