Regression of Dalton's lymphoma in vivo via decline in lactate dehydrogenase and induction of apoptosis by a ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide as ligand. Academic Article uri icon

Overview

abstract

  • A novel ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide (Ru(II)-CNEB) was found to interact with and inhibit M4-lactate dehydrogenase (M4-LDH), a tumor growth supportive enzyme, at the tissue level. The present article describes modulation of M4-LDH by this compound in a T-cell lymphoma (Dalton's Lymphoma: DL) vis a vis regression of the tumor in vivo. The compound showed a dose dependent cytotoxicity to DL cells in vitro. When a non toxic dose (10 mg/kg bw i.p.) of Ru(II)-CNEB was administered to DL bearing mice, it also produced a significant decline in DL cell viability in vivo. The DL cells from Ru(II)-CNEB treated DL mice showed a significant decline in the level of M4-LDH with a concomitant release of this protein in the cell free ascitic fluid. A significant increase of nuclear DNA fragmentation in DL cells from Ru(II)-CNEB treated DL mice also coincided with the release of mitochondrial cytochrome c in those DL cells. Importantly, neither blood based biochemical markers of liver damage nor the normal patterns of LDH isozymes in other tissues were affected due to the treatment of DL mice with the compound. These results were also comparable with the effects of cisplatin (an anticancer drug) observed simultaneously on DL mice. The findings suggest that Ru(II)-CNEB is able to regress Dalton's lymphoma in vivo via declining M4-LDH and inducing mitochondrial dysfunction-apoptosis pathway without producing any toxicity to the normal tissues.

publication date

  • November 29, 2008

Research

keywords

  • Apoptosis
  • Benzamides
  • Coordination Complexes
  • L-Lactate Dehydrogenase
  • Lymphoma
  • Ruthenium

Identity

Scopus Document Identifier

  • 70450225736

Digital Object Identifier (DOI)

  • 10.1007/s10637-008-9202-8

PubMed ID

  • 19043664

Additional Document Info

volume

  • 27

issue

  • 6