Cytosolic free calcium concentrations in synaptosomes during histotoxic hypoxia. Academic Article uri icon

Overview

abstract

  • Altered cytosolic free calcium concentrations ([Ca2+]i) accompany impaired brain metabolism and may mediate subsequent effects on brain function and cell death. The current experiments examined whether hypoxia-induced elevations in [Ca2+]i are from external or internal sources. In the absence of external calcium, neither KCl depolarization, histotoxic hypoxia (KCN), nor the combination changed [Ca2+]i. However, with external CaCl2 concentrations as small as 13 microM, KCl depolarization increased [Ca2+]i instantaneously while hypoxia gradually raised [Ca2+]i. The combination of KCN and KCl was additive. Increasing external calcium concentrations up to 2.6 mM exaggerated the effects of K+ and KCN on [Ca2+]i, but raising medium calcium to 5.2 mM did not further augment the rise. Diminishing the sodium in the media, which alters the activity and perhaps the direction of the Na/Ca exchanger, reduced the increase in [Ca2+]i due to hypoxia, but enhanced the KCl response. The changes in ATP following K+ depolarization, KCN or their combination in the presence of physiological calcium concentrations did not parallel alterations in [Ca2+]i, which suggests that diminished activity of the calcium dependent ATPase does not underlie the elevation in [Ca2+]i. Valinomycin, an ionophore which reduces the mitochondrial membrane potential, elevated [Ca2+]i and the effects were additive with K+ depolarization in a calcium dependent manner that paralleled the effects of hypoxia. Together these results suggest that hypoxia-induced elevations of synaptosomal [Ca2+]i are due to an inability of the synaptosome to buffer entering calcium.

publication date

  • April 1, 1991

Research

keywords

  • Calcium
  • Cerebral Cortex
  • Synaptosomes

Identity

Scopus Document Identifier

  • 0025815678

Digital Object Identifier (DOI)

  • 10.1007/BF00965567

PubMed ID

  • 1922657

Additional Document Info

volume

  • 16

issue

  • 4