Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Streptococcus agalactiae (group B Streptococcus) is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF) and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds to growth in AF, and thus new leads for pathogenesis research.

publication date

  • July 1, 2009

Research

keywords

  • Amniotic Fluid
  • RNA, Messenger
  • Streptococcus agalactiae

Identity

PubMed Central ID

  • PMC2700258

Scopus Document Identifier

  • 67749120526

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0006114

PubMed ID

  • 19568429

Additional Document Info

volume

  • 4

issue

  • 7