Abnormal serum concentrations of proteins in Parkinson's disease.
Academic Article
Overview
abstract
Blood serum was used to identify protein biomarkers for diagnosis of Parkinson's disease (PD) using analytically validated quantitative 2D-gel electrophoresis, and single variable and multivariate statistics. Using banked samples from a first medical center, we identified 57 specific protein spot biomarkers with disease-specific abnormal levels in serum of patients with PD, Alzheimer's disease, amyotrophic lateral sclerosis and similar neurodegenerative conditions (337 samples), when compared to age-matched normal controls (132 samples). To further assess their clinical usefulness in Parkinson's disease, we obtained prospective newly drawn blood serum samples from a second (56 PD, 30 controls) and third (6 PD, 48 controls) medical center. The protein concentrations of the 57 biomarkers were assessed by 2D-gel electrophoresis. Stepwise linear discriminant analysis selected a combination of 21 of the 57 as optimal to distinguish PD patients from controls. When applied to the samples from the second site, the 21 proteins had sensitivity of 93.3% (52 of 56 PD correctly classified), specificity of 92.9% (28 of 30 controls correctly classified); 15 of 15 patients with mild, 28 of 30 with moderate to severe symptoms, and all of the 6 PD patients from the third site were correctly classified. Eleven of the 21 proteins showed statistically significant abnormal concentrations in patients with mild symptoms, and 14 in patients with moderate-severe symptoms. The protein identities reflect the heterogeneity of Parkinson's disease, and thus may provide the capability of monitoring the blood for a diverse range of PD pathophysiological mechanisms: cellular degeneration, oxidative stress, inflammation, and transport.