Down regulation of genes involved in T cell polarity and motility during the induction of heart allograft tolerance by allochimeric MHC I. Academic Article uri icon

Overview

abstract

  • BACKGROUND: The allochimeric MHC class I molecule [alpha1h1/u]-RT1.Aa that contains donor-type (Wistar Furth, WF; RT1u) epitopes displayed on recipient-type (ACI, RT1a) administered in conjunction with sub-therapeutic dose of cyclosporine (CsA) induces indefinite survival of heterotopic cardiac allografts in rat model. In vascularized transplantation models, the spleen contributes to graft rejection by generating alloantigen reactive T cells. The immune response in allograft rejection involves a cascade of molecular events leading to the formation of immunological synapses between T cells and the antigen-presenting cells. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular pathways involved in the immunosuppressive function of allochimeric molecule we performed microarray and quantitative RTPCR analyses of gene expression profile of splenic T cells from untreated, CsA treated, and allochimeric molecule + subtherapeutic dose of CsA treated animals at day 1, 3 and 7 of post transplantation. Allochimeric molecule treatment caused down regulation of genes involved in actin filament polymerization (RhoA and Rac1), cell adhesion (Catna1, Vcam and CD9), vacuolar transport (RhoB, Cln8 and ATP6v1b2), and MAPK pathway (Spred1 and Dusp6) involved in tubulin cytoskeleton reorganization and interaction between actin and microtubule cytoskeleton. All these genes are involved in T cell polarity and motility, i.e., their ability to move, scan and to form functional immunological synapse with antigen presenting cells (APCs). CONCLUSIONS: These results indicate that the immunosuppressive function of allochimeric molecule may depend on the impairment of T cells' movement and scanning ability, and possibly also the formation of immunological synapse. We believe that these novel findings may have important clinical implications for organ transplantation.

publication date

  • December 2, 2009

Research

keywords

  • Cell Movement
  • Cell Polarity
  • Down-Regulation
  • Heart Transplantation
  • Histocompatibility Antigens Class I
  • T-Lymphocytes
  • Transplantation Tolerance

Identity

PubMed Central ID

  • PMC2780702

Scopus Document Identifier

  • 77949501760

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0008020

PubMed ID

  • 19956540

Additional Document Info

volume

  • 4

issue

  • 12