The NF (Nuclear factor)-κB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells.
Academic Article
Overview
abstract
Interactions between the nuclear factor (NF)-κB inhibitor parthenolide and the pan-histone deacetylase inhibitors (HDACIs) vorinostat and LBH589 were investigated in human acute myeloid leukaemia (AML) cells, including primary AML blasts. Co-administration of parthenolide blocked HDACI-mediated phosphorylation/activation of IKK and RelA/p65 in association with increased JNK1 activation in various AML cell types. These events were accompanied by an increase in apoptosis in multiple AML cell lines (e.g. U937, HL-60, NB4, MV-4-11, and MOLM-13). Significantly, parthenolide also increased HDACI-mediated cell death in haematopoietic cells transduced with the MLL-MLLT1 fusion gene, which exhibit certain leukaemia-initiating cell characteristics, as well as primary AML blasts. Exposure to parthenolide/HDACI regimens clearly inhibited the growth of AML-colony-forming units but was relatively sparing toward normal haematopoietic progenitors. Notably, blockade of c-Jun N-terminal kinase (JNK) signalling by either pharmacological inhibitors or genetic means (e.g. dominant-negative JNK1 or JNK1 shRNA) diminished parthenolide/HDACI-mediated lethality. Moreover, dominant-negative MKK7, but not dominant-negative MKK4/SEK1, blocked JNK1 activation and apoptosis induced by parthenolide/HDACI regimens. Together, these findings indicate that parthenolide potentiates HDACI lethality in human AML cells through a process involving NF-κB inhibition and subsequent MKK7-dependent activation of the SAPK/JNK pathway. They also raise the possibility that this strategy may target leukaemic progenitor cells.