Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Cerebral folate deficiency may be amenable to therapeutic supplementation. Diverse metabolic pathways and unrelated processes can lead to cerebrospinal fluid 5-methyltetrahydrofolate (5-MTHF) depletion, the hallmark of cerebral folate deficiency. OBJECTIVE: To analyze cerebral folate abundance in a large prospective series of children diagnosed with any neurologic disorder for which a diagnostic lumbar puncture was indicated. DESIGN: We studied the spectrum and frequency of disorders associated with cerebral folate deficiency by measuring cerebrospinal fluid 5-MTHF, biogenic amines, and pterins. Direct sequencing of the FOLR1 transporter gene was also performed in some patients. SETTING: Academic pediatric medical center. PARTICIPANTS: We studied 134 individuals free of neurometabolic disease and 584 patients with any of several diseases of the central nervous system. RESULTS: Of 584 patients, 71 (12%) exhibited 5-MTHF deficiency. Mild to moderate deficiency (n = 63; range, 19-63 nmol/L) was associated with perinatal asphyxia, central nervous system infection, or diseases of probable genetic origin (inborn errors of metabolism, white matter disorders, Rett syndrome, or epileptic encephalopathies). Severe 5-MTHF depletion (n = 8; range, 0.6-13 nmol/L) was detected in severe MTHF reductase deficiency, Kearns-Sayre syndrome, biotin-responsive striatal necrosis, acute necrotizing encephalitis of Hurst, and FOLR1 defect. A strong correlation was observed between cerebrospinal fluid and plasma folate levels in cerebral folate deficiency. CONCLUSIONS: Of the 2 main forms of cerebral folate deficiency identified, mild to moderate 5-MTHF deficiency was most commonly associated with disorders bearing no primary relation to folate metabolism, whereas profound 5-MTHF depletion was associated with specific mitochondrial disorders, metabolic and transporter defects, or cerebral degenerations. The results suggest that 5-MTHF can serve either as the hallmark of inborn disorders of folate transport and metabolism or, more frequently, as an indicator of neurologic dysfunction.

publication date

  • May 1, 2011

Research

keywords

  • Brain
  • Folic Acid
  • Folic Acid Deficiency
  • Tetrahydrofolates

Identity

Scopus Document Identifier

  • 79955754354

Digital Object Identifier (DOI)

  • 10.1001/archneurol.2011.80

PubMed ID

  • 21555636

Additional Document Info

volume

  • 68

issue

  • 5