NICER elements: a family of nerve growth factor-inducible cAMP-extinguishable retrovirus-like elements. Academic Article uri icon

Overview

abstract

  • We have shown previously that the transcription of the gene designated d5 is induced by nerve growth factor (NGF) in rat adrenal pheochromocytoma PC-12 cells and that this NGF induction is repressed by cAMP. In this paper we demonstrate that d5 is a member of a gene family that contains several hundred members, which is closely related to retroviruses and retrotransposons, as demonstrated by the following observations: (i) the original d5 cDNA hybridized to numerous restriction fragments in genomic DNA; (ii) d5 cDNA hybridized to genomic clones with various intensities, and genomic clones can be isolated with a frequency suggesting that this family includes several hundred members; and (iii) there were minor sequence variations in four independently isolated cDNA clones that were homologous to d5 cDNA. Primer extension studies show that initiation of the 5.7-kilobase d5 mRNA(s) occurs at a unique site relative to a synthetic primer. The 5' end of the cDNA sequence was homologous to Rasheed rat sarcoma virus; and a genomic clone contained several elements that are typical of a long terminal repeat (LTR), including a CCAAT box, a TATA box, a primer binding site, a poly(A) addition signal, and a poly(A) addition site. Furthermore, there is a LTR at the 3' end of at least one of the genes in this family, and there appeared to be a four-base duplication at the probable site of integration into host DNA. Since several members of this family retain responses to NGF and cAMP, we conclude that the regulatory elements present in the LTR have been conserved in many members of this family. We have named this family of genes the NICER elements because they are a family of NGF-inducible cAMP-extinguishable retrovirus-like elements.

publication date

  • May 1, 1990

Research

keywords

  • Cyclic AMP
  • Multigene Family
  • Nerve Growth Factors
  • Retroviridae

Identity

PubMed Central ID

  • PMC53986

Scopus Document Identifier

  • 0025333898

PubMed ID

  • 2160077

Additional Document Info

volume

  • 87

issue

  • 10