A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. Academic Article uri icon

Overview

abstract

  • CD4 T cell deficiency or defective IFNγ signaling render humans and mice highly susceptible to Mycobacterium tuberculosis (Mtb) infection. The prevailing model is that Th1 CD4 T cells produce IFNγ to activate bactericidal effector mechanisms of infected macrophages. Here we test this model by directly interrogating the effector functions of Th1 CD4 T cells required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of IFNγ or TNF and does not require the perforin or FAS effector pathways. Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a previously unrecognized IFNγ/TNF independent pathway that efficiently controls Mtb and suggest that optimization of this alternative effector function may provide new therapeutic avenues to combat Mtb through vaccination.

publication date

  • May 19, 2011

Research

keywords

  • Antigens, Bacterial
  • Bacterial Proteins
  • Interferon-gamma
  • Mycobacterium tuberculosis
  • Th1 Cells
  • Tuberculosis

Identity

PubMed Central ID

  • PMC3098235

Scopus Document Identifier

  • 79958069668

Digital Object Identifier (DOI)

  • 10.1371/journal.ppat.1002052

PubMed ID

  • 21625591

Additional Document Info

volume

  • 7

issue

  • 5