Suppression of 3-hydroxy-3-methylglutaryl-CoA reductase by low density lipoproteins produced in vitro by lipoprotein lipase action on nonsuppressive very low density lipoproteins.
Academic Article
Overview
abstract
Very low density lipoproteins (VLDL), Sf60 to 400, from normolipemic individuals do not suppress 3-hydroxy-3-methylglutaryl-CoA reductase activity in cultured normal human fibroblasts at concentrations 20-fold higher than those of low density lipoproteins (LDL) that give total suppression. To determine if these VLDL contain all of the structural elements necessary for receptor-mediated suppression, they were converted in vitro with bovine milk lipoprotein lipase to low density lipoproteins. These LDL-like lipoproteins were as effective in suppression as LDL isolated directly from plasma, with half-maximal and complete suppression at 1 and 4 microgram of cholesterol ml-1. Neither native LDL nor LDL produced in vitro suppressed receptor-negative fibroblasts. We conclude that action of lipoprotein lipase on VLDL leads to a rearrangement of lipoprotein components that permits interaction of LDL produced in vitro with the LDL-specific cell surface receptor of fibroblasts and subsequent suppression of 3-hydroxy-3-methylglutaryl-CoA reductase.