Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? Review uri icon

Overview

abstract

  • A major challenge in developing stroke therapeutics that augment adaptive pathways to stress has been to identify targets that can activate compensatory programs without inducing or adding to the stress of injury. In this regard, hypoxia-inducible factor prolyl hydroxylases (HIF PHDs) are central gatekeepers of posttranscriptional and transcriptional adaptation to hypoxia, oxidative stress, and excitotoxicity. Indeed, some of the known salutary effects of putative 'antioxidant' iron chelators in ischemic and hemorrhagic stroke may derive from their abilities to inhibit this family of iron, 2-oxoglutarate, and oxygen-dependent enzymes. Evidence from a number of laboratories supports the notion that HIF PHD inhibition can improve histological and functional outcomes in ischemic and hemorrhagic stroke models. In this review, we discuss this evidence and highlight important gaps in our understanding that render HIF PHD inhibition a promising but not yet preclinically validated target for protection and repair after stroke.

publication date

  • March 14, 2012

Research

keywords

  • Cell Hypoxia
  • Enzyme Inhibitors
  • Hypoxia-Inducible Factor 1
  • Procollagen-Proline Dioxygenase
  • Stroke

Identity

PubMed Central ID

  • PMC3390817

Scopus Document Identifier

  • 84863483418

Digital Object Identifier (DOI)

  • 10.1038/jcbfm.2012.28

PubMed ID

  • 22415525

Additional Document Info

volume

  • 32

issue

  • 7