Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. Academic Article uri icon

Overview

abstract

  • The intestinal microbiota contributes to the development of the immune system, and conversely, the immune system influences the composition of the microbiota. Toll-like receptors (TLRs) in the gut recognize bacterial ligands. Although TLR signaling represents a major arm of the innate immune system, the extent to which TLRs influence the composition of the intestinal microbiota remains unclear. We performed deep 16S ribosomal RNA sequencing to characterize the complex bacterial populations inhabiting the ileum and cecum of TLR- and MyD88-deficient mice. The microbiota of MyD88- and TLR-deficient mouse colonies differed markedly, with each colony harboring distinct and distinguishable bacterial populations in the small and large intestine. Comparison of MyD88-, TLR2-, TLR4-, TLR5-, and TLR9-deficient mice and their respective wild-type (WT) littermates demonstrated that the impact of TLR deficiency on the composition of the intestinal microbiota is minimal under homeostatic conditions and after recovery from antibiotic treatment. Thus, differences between TLR-deficient mouse colonies reflected long-term divergence of the microbiota after extended husbandry in isolation from each other. Long-term breeding of isolated mouse colonies results in changes of the intestinal microbiota that are communicated to offspring by maternal transmission, which account for marked compositional differences between WT and mutant mouse strains.

publication date

  • July 23, 2012

Research

keywords

  • Cecum
  • Ileum
  • Immunity, Innate
  • Metagenome
  • Toll-Like Receptors

Identity

PubMed Central ID

  • PMC3409501

Scopus Document Identifier

  • 84866461477

Digital Object Identifier (DOI)

  • 10.1084/jem.20120504

PubMed ID

  • 22826298

Additional Document Info

volume

  • 209

issue

  • 8