Plasma epinephrine modulates the cerebrovasodilation evoked by electrical stimulation of dorsal medulla.
Academic Article
Overview
abstract
We examined whether plasma epinephrine contributes to the increase in regional cerebral blood flow (rCBF) evoked by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg, s.c.), paralyzed and artificially ventilated. The DMRF was electrically stimulated through microelectrodes stereotaxically implanted. During stimulation, blood gases and arterial pressure were monitored and maintained within normal range. rCBF was determined in 11 dissected brain regions using the [14C]iodoantipyrine technique. Plasma epinephrine and norepinephrine were measured radioenzymatically in rats with intact adrenals or adrenalectomy, and with or without infusion of epinephrine. DMRF stimulation induced widespread increases in rCBF associated with a 50-fold increase in plasma epinephrine and a 20-fold increase in norepinephrine without changes in the electroencephalogram. In contrast, stimulation of the adjacent medial longitudinal fasciculus had no effect upon rCBF or plasma catecholamines. Acute bilateral adrenalectomy produced regionally selective reductions in the stimulation-coupled increases in rCBF throughout brain (P less than 0.05). Infusion of epinephrine in adrenalectomized rats to levels comparable to those observed in intact animals during DMRF stimulation did not by itself modify rCBF. However, when infused in conjunction with stimulation of the DMRF, but not medial longitudinal fasciculus, epinephrine fully restored the stimulus-related increases in rCBF in all brain regions to levels comparable to those observed in intact rats. We conclude that stimulation of the DMRF elevates rCBF through two mechanisms; by a neurally-mediated increase in local metabolism and thereby flow (adrenal independent secondary vasodilation) and by releasing epinephrine from adrenal medulla which secondarily acts to increase rCBF by an action on brain.