TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Academic Article uri icon

Overview

abstract

  • UNLABELLED: Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the Janus-activated kinase (JAK) tyrosine kinase family, TYK2, and its downstream effector STAT1, in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently showed TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway in T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of interleukin (IL)-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the antiapoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway. SIGNIFICANCE: In recent years, "pathway dependence" has been revealed in specific types of human cancer, which can be important because they pinpoint proteins that are particularly vulnerable to antitumor-targeted inhibition (so-called Achilles’ heel proteins). Here, we use RNAi technology to identify a novel oncogenic pathway that involves aberrant activation of the TYK2 tyrosine kinase and its downstream substrate, STAT1, which ultimately promotes T-ALL cell survival through the upregulation of BCL2 expression

publication date

  • March 7, 2013

Research

keywords

  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
  • Proto-Oncogene Proteins c-bcl-2
  • STAT1 Transcription Factor
  • TYK2 Kinase

Identity

PubMed Central ID

  • PMC3651770

Scopus Document Identifier

  • 84877595634

Digital Object Identifier (DOI)

  • 10.1158/2159-8290.CD-12-0504

PubMed ID

  • 23471820

Additional Document Info

volume

  • 3

issue

  • 5