Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Academic Article uri icon

Overview

abstract

  • PURPOSE: Tumor-infiltrating lymphocytes (TIL) have prognostic significance in many cancers, yet their roles in glioblastoma have not been fully defined. We hypothesized that TILs in glioblastoma are associated with molecular alterations, histologies, and survival. EXPERIMENTAL DESIGN: We used data from The Cancer Genome Atlas (TCGA) to investigate molecular, histologic, and clinical correlates of TILs in glioblastomas. Lymphocytes were categorized as absent, present, or abundant in histopathologic images from 171 TCGA glioblastomas. Associations were examined between lymphocytes and histologic features, mutations, copy number alterations, CpG island methylator phenotype, transcriptional class, and survival. We validated histologic findings using CD3G gene expression. RESULTS: We found a positive correlation between TILs and glioblastomas with gemistocytes, sarcomatous cells, epithelioid cells, and giant cells. Lymphocytes were enriched in the mesenchymal transcriptional class and strongly associated with mutations in NF1 and RB1. These mutations are frequent in the mesenchymal class and characteristic of gemistocytic, sarcomatous, epithelioid, and giant cell histologies. Conversely, TILs were rare in glioblastomas with small cells and oligodendroglioma components. Lymphocytes were depleted in the classical transcriptional class and in EGF receptor (EGFR)-amplified and homozygous PTEN-deleted glioblastomas. These alterations are characteristic of glioblastomas with small cells and glioblastomas of the classical transcriptional class. No association with survival was shown. CONCLUSIONS: TILs were enriched in glioblastomas of the mesenchymal class, strongly associated with mutations in NF1 and RB1 and typical of histologies characterized by these mutations. Conversely, TILs were depleted in the classical class, EGFR-amplified, and homozygous PTEN-deleted tumors and rare in histologies characterized by these alterations.

publication date

  • July 17, 2013

Research

keywords

  • Biomarkers, Tumor
  • DNA Methylation
  • Gene Dosage
  • Glioblastoma
  • Lymphocytes, Tumor-Infiltrating
  • Mutation

Identity

PubMed Central ID

  • PMC3865611

Scopus Document Identifier

  • 84884543901

Digital Object Identifier (DOI)

  • 10.1158/1078-0432.CCR-13-0551

PubMed ID

  • 23864165

Additional Document Info

volume

  • 19

issue

  • 18